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Binary azides of group 14 elements form a class of rare highly
endothermic compounds.1 Synthesis and handling of these com-
pounds afford proper experimental care to minimize unpredictable,
explosive hazards resulting from exothermic decomposition by eli-
mination of dinitrogen.2 Therefore, it is not surprising that to date
only the ions [C(N3)3]+ 3 and [E(N3)6]2- (E ) Ge-Pb)1,4 and the
primary explosiveR-Pb(N3)2

5 have been isolated and structurally
characterized. In comparison, structural information for analogous
silicon compounds is lacking. Thus far, only Si(N3)4 has been re-
ported to be a violently explosive substance,6 which was prepared
in situ and characterized by29Si NMR or IR spectroscopy.7 Fol-
lowing our interest in main-group element azides with a high ni-
trogen content,8 we describe here the synthesis and full character-
ization of the [Si(N3)6]2- ion.

Treatment of a solution of SiCl4 in CH3CN with an excess of
(PPN)N3 at 0 °C leads selectively to (PPN)2[Si(N3)6] (1) as
evidenced by IR monitoring of the reaction (equation).

The hexaazidosilicate salt1 was separated from (PPN)X (X)
Cl, N3) after repeated recrystallization from CH3CN and isolated
as a colorless, moisture-sensitive, crystalline solid in 37-62%
yields. It was characterized by elemental analysis, thermal analysis
and IR, Raman,29Si, and14N NMR spectroscopies and single-crystal
X-ray crystallography.9 Compound1 is insoluble in THF and very
soluble in CH2Cl2 and CH3CN to give colorless solutions, which
turn immediately cloudy due to hydrolysis, when exposed to air.
Hydrolysis of1 liberates HN3 and (PPN)N3.10 The hexazidosilicate
salt1 exhibits remarkable thermal stability, melting in vacuo without
decomposition at 225°C. Its melting point is even higher than that
of the germanium analogue (PPN)2[Ge(N3)6] (2) (mp ) 211 °C).1

Simultaneous thermal analysis (TG-DTA) of1 coupled with mass
spectrometric detection of the evolved gases revealed that two
distinct exothermic decomposition processes follow the endothermic
melting of1 at the extrapolated onset temperatureTon

ex ) 214 °C
(peak temperatureTp ) 220°C). The first process started atTon )
256°C (Tp ) 296°C) and was associated with a mass loss of 6.1%,
which is mainly ascribed to elimination of N2.11 The second process
was observed atTon ) 321 °C, and was accompanied by a fast
mass loss and liberation of energy (Tp ) 333 °C) leading to a
pressure surge on the balance. This process involves degradation
of the PPN cations and evolution of Si(N3)4, N2, and some HN3.11

The solid-state structure of1 was determined by single-crystal X-ray
diffraction.1 crystallizes in the space groupP1h and is isostructural
with the hexaazidogermanate salt2.1 The crystal structure of1
consists of discrete PPN+ cations andS2 symmetric [Si(N3)6]2-

anions (Figure 1). The mean Si-Nazidebond length of1 (1.871 Å,

Table 1) is 6-11 pm longer than those reported for tetrahedral
azidosilanes (Si-N ) 1.760(3)-1.814(2) Å).12 The mean NR-Nâ

and Nâ-Νγ bond lengths in1 (1.202 and 1.145 Å, Table 1) agree
well with those in (PPN)2[Ge(N3)6] ((NR-Nâ)av ) 1.212 Å, (Nâ-
Nγ)av ) 1.147 Å)1 and the difference∆(NN) between the N-N
bond lengths of 5.7 pm is smaller than that found in other covalent
azides.8 All of these structural parameters suggest in agreement
with the IR data and the results of the theoretical calculations the
presence of polar Si-N bonds in1. The IR spectra of1 in CH3CN
display at different concentrations only one very strong absorption
band for theνas(N3) vibration at 2109 cm-1 13,14 and give no
evidence for a dissociation of1 to (PPN)N3 and Si(N3)4.10,15 The
Raman and IR spectra of1 are consistent with the presence ofS6

symmetric [Si(N3)6]2- ions in solution and allow in combination
with the calculated vibrational spectra (Supporting Information) an
assignment of most observed bands to fundamental modes of the
[Si(N3)6]2- ion.9 The 29Si NMR spectrum of1 in CH3CN displays
one sharp signal atδ ) -188.7 ppm,16 which is considerably
upfield-shifted relative to that of Si(N3)4 (-75.1 ppm).7a The 29Si
chemical shift of 1 agrees well with that calculated for the
[Si(N3)6]2- ion (-198.2 ppm)16 using the GIAO-MBPT(2) method,17

and is similar to that reported for other hexa-coordinate silicon
compounds, such as ZnSiF6 (δ ) -185.3 ppm).18 All these facts
provide additional evidence for the presence of intact [Si(N3)6]2-

ions in solution. The14N NMR spectrum of1 in CH3CN shows
two singlet resonances atδ ) -214.7 (Nγ) and -297 ppm (NR)
for the [Si(N3)6]2- ion, which agree well with the calculated values
(δ(Nγ/NR) ) -217/285 ppm).16,19

The electronic structure of the [Si(N3)6]2- ion was calculated
using different methods and basis sets (Table 1, Supporting Infor-
mation).20,21 All geometry optimizations led to aS6 symmetric
minimum structure as the most stable [Si(N3)6]2- isomer. Moreover,
a good to excellent agreement was found between the calculated
and experimental bond lengths and angles.
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SiCl4 + ex. PPN(N3)98
MeCN, 0°C

PPN+ ) [(Ph3P)2N]+
(PPN)2[Si(N3)6]

(1)

Figure 1. DIAMOND plot of the anion [Si(N3)6]2- in 1 (view down the
pseudo-S6 axis). Thermal ellipsoids are set at the 50% probability level.
Selected bond lengths (Å) and angles (deg): Si-N2 1.866(1), Si-N5 1.881-
(1), Si-N8 1.867(1), N2-N3 1.198(2), N3-N4 1.144(2), N5-N6 1.201-
(2), N6-N7 1.144(2), N8-N9 1.207(2), N9-N10 1.146(2), Si-N2-N3
126.5(1), Si-N5-N6 122.6(1), Si-N8-N9 121.9(1), N2-Si-N5 90.16-
(6), N2-Si-N8 89.32(6), N5-Si-N8 90.30(6), N2-N3-N4 175.3(2),
N5-N6-N7 176.4(2), N8-N9-N10 176.1(2).
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The best results were obtained at the RI-MP2/TZVP level (Table
1). The small difference between the calculated and experimental
Nâ-Nγ length (Dc ) 1.174,Do ) 1.145(1) Å) can be traced back
to thermal motion in the crystal.22 Thus, a correction ofDo with
the riding model22 led to a significant elongation of the Nâ-Nγ

distances (Di(av) ) 1.166(5) Å),23 which agrees very well with
the calculated length, whereas the Hirshfeld test for rigid body
vibrations24 failed with the X-ray data of1.25 An NBO analysis of
[Si(N3)6]2- reveals the presence of polar Si-N bonds (Table 1).26

A second isomer of [Si(N3)6]2- with D3d symmetry was also found
to be a local minimum on the potential energy surface. How-
ever, this isomer is less stable than theS6 symmetric isomer (100.3
kJ mol-1 at the HF/SVP level and 54.4 kJ mol-1 at the BP86/SVP
level (zero-point vibrational energy corrected). A look at the electron
density distribution suggests that an optimal orientation of the azido
groups is achieved in theS6 symmetric minimum structure to mi-
nimize the Coulombic repulsion between the lone pairs of the NR

atoms and to maximize the Coulombic attraction between the op-
posite charged NR and Nâ atoms in adjacent azido groups.

The anion [Si(N3)6]2- belongs to a class of very rare hyperco-
ordinate silicon complexes with a SiN6 coordination polyhedron,18,27

and has the highest nitrogen content (89.98%) among the homoleptic
hexaazidometalates reported thus far.28 Further studies in this
direction show that stable neutral Lewis-base adducts of Si(N3)4

are also accessible following a similar approach.

Supporting Information Available: CCDC 192397 contains the
supplementary crystallographic data for this paper. These data can be
obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retriev-
ing.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ,
UK; fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk). Experi-
mental Section, X-ray crystallography of1 (CIF), thermal analysis of
1, electronic structure calculations, calculations of NMR chemical shifts
and vibrational spectra of [Si(N3)6]2-, isocharge plot of calculated and
experimental electron density (PDF), and Acknowledgment. This
material is available free of charge via the Internet at http://pubs.acs.org
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Table 1. Experimental and Calculated Parameters of [Si(N3)6]2-a

bond lengths D [Å] angles [°]

Si−NR NR−Nâ Nâ−Nγ Si−NR−Nâ

X-rayb 1.871(5) 1.202(3) 1.145(1) 124(1)
RI-MP2/TZVP 1.876 1.206 1.174 126.1
RI-BP86/TZVPPc 1.902 1.205 1.161 127.2
B3LYP/TZVPPc 1.896 1.195 1.146 127.1
HF/TZVPPc 1.889 1.179 1.108 124.4

partial chargesq [e]
BP86/TZVPP Si:+1.86 NR: -0.58 Nâ: +0.22 Nγ: -0.28

a Details of all theoretical calculations are found in the Supporting
Information.b The unweighted meanxu of the three crystallographically
independent bond lengths and angles of1 is listed. The standard deviation
σ of xu is given in parentheses and was calculated byσ2 ) ∑(xi - xu)2/(n2

- n), xi ) individual value,n ) 3. c Restrained geometry (S6).
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